9 Multivariada

Entrada dos dados

Dados entre parênteses são os valores observados das respectivas variáveis, X1, X2, X3, X4 e X5.

##               X1        X2            X3            X4            X5
## X1  1.446667e-07  1.76e-06 -5.603333e-06  2.726667e-06 -3.116667e-05
## X2  1.760000e-06  7.71e-05  1.480000e-05  7.610000e-05 -2.610000e-04
## X3 -5.603333e-06  1.48e-05  9.150667e-04 -6.873333e-05  3.563333e-03
## X4  2.726667e-06  7.61e-05 -6.873333e-05  8.696667e-05 -6.036667e-04
## X5 -3.116667e-05 -2.61e-04  3.563333e-03 -6.036667e-04  1.525667e-02
## eigen() decomposition
## $values
## [1] 1.612000e-02 2.134340e-04 2.489500e-06 1.859592e-08 1.729972e-09
## 
## $vectors
##              [,1]       [,2]        [,3]        [,4]        [,5]
## [1,] -0.001968185 -0.0120528 -0.11495526  0.99242360 -0.04161186
## [2,] -0.015794397 -0.5786029  0.80786827  0.08928368  0.06592820
## [3,]  0.228128328 -0.5960180 -0.35869625 -0.07671633 -0.67688376
## [4,] -0.037679522 -0.5458098 -0.44622410 -0.02872057  0.70762359
## [5,]  0.972771496  0.1092141  0.07971945  0.02033617  0.18713406
##               X1        X2            X3            X4            X5
## X1  1.446667e-07  1.76e-06 -5.603333e-06  2.726667e-06 -3.116667e-05
## X2  1.760000e-06  7.71e-05  1.480000e-05  7.610000e-05 -2.610000e-04
## X3 -5.603333e-06  1.48e-05  9.150667e-04 -6.873333e-05  3.563333e-03
## X4  2.726667e-06  7.61e-05 -6.873333e-05  8.696667e-05 -6.036667e-04
## X5 -3.116667e-05 -2.61e-04  3.563333e-03 -6.036667e-04  1.525667e-02
## eigen() decomposition
## $values
## [1] 1.612000e-02 2.134340e-04 2.489500e-06 1.859592e-08 1.729972e-09
## 
## $vectors
##              [,1]       [,2]        [,3]        [,4]        [,5]
## [1,] -0.001968185 -0.0120528 -0.11495526  0.99242360 -0.04161186
## [2,] -0.015794397 -0.5786029  0.80786827  0.08928368  0.06592820
## [3,]  0.228128328 -0.5960180 -0.35869625 -0.07671633 -0.67688376
## [4,] -0.037679522 -0.5458098 -0.44622410 -0.02872057  0.70762359
## [5,]  0.972771496  0.1092141  0.07971945  0.02033617  0.18713406
## Importance of components:
##                           PC1     PC2      PC3       PC4       PC5
## Standard deviation     0.1270 0.01461 0.001578 0.0001364 4.159e-05
## Proportion of Variance 0.9868 0.01307 0.000150 0.0000000 0.000e+00
## Cumulative Proportion  0.9868 0.99985 1.000000 1.0000000 1.000e+00

Resultados a partir da matriz de covariância

##            X1          X2          X3         X4         X5
## X1  1.0000000  0.52698863 -0.48700773  0.7687257 -0.6634013
## X2  0.5269886  1.00000000  0.05571962  0.9293537 -0.2406487
## X3 -0.4870077  0.05571962  1.00000000 -0.2436490  0.9536747
## X4  0.7687257  0.92935375 -0.24364900  1.0000000 -0.5240720
## X5 -0.6634013 -0.24064868  0.95367468 -0.5240720  1.0000000
## eigen() decomposition
## $values
## [1] 3.163658e+00 1.525782e+00 3.025159e-01 8.042938e-03 1.732466e-06
## 
## $vectors
##            [,1]       [,2]       [,3]        [,4]          [,5]
## [1,] -0.4975623 0.03740992  0.8416617  0.20648920 -0.0003848684
## [2,] -0.3778884 0.57085303 -0.3984395  0.61010372  0.0186158858
## [3,]  0.3684580 0.60263117  0.2311883 -0.16487762 -0.6484147684
## [4,] -0.4961633 0.37260806 -0.1269516 -0.74522471  0.2085872370
## [5,]  0.4771716 0.41319029  0.2515689  0.05090347  0.7319173132
## Warning: In prcomp.default(cbind(X1, X2, X3, X4, X5), cor = TRUE, scale = TRUE) :
##  extra argument 'cor' will be disregarded
## Standard deviations (1, .., p=5):
## [1] 1.778667446 1.235225294 0.550014473 0.089682431 0.001316232
## 
## Rotation (n x k) = (5 x 5):
##           PC1        PC2        PC3         PC4           PC5
## X1 -0.4975623 0.03740992 -0.8416617  0.20648920 -0.0003848684
## X2 -0.3778884 0.57085303  0.3984395  0.61010372  0.0186158858
## X3  0.3684580 0.60263117 -0.2311883 -0.16487762 -0.6484147684
## X4 -0.4961633 0.37260806  0.1269516 -0.74522471  0.2085872370
## X5  0.4771716 0.41319029 -0.2515689  0.05090347  0.7319173132
## Importance of components:
##                           PC1    PC2    PC3     PC4      PC5
## Standard deviation     1.7787 1.2352 0.5500 0.08968 0.001316
## Proportion of Variance 0.6327 0.3052 0.0605 0.00161 0.000000
## Cumulative Proportion  0.6327 0.9379 0.9984 1.00000 1.000000
##              PC1        PC2        PC3           PC4           PC5
## [1,] -1.82622087  1.8010525 -0.4542054  0.0003485361 -0.0007263451
## [2,] -1.77385089 -0.2196976  0.5143779 -0.0157753617  0.0019677049
## [3,]  0.81813538 -1.1340293 -0.8968309  0.0067988051  0.0008807578
## [4,] -0.07349764 -0.9654427  0.2286037 -0.1314456477 -0.0014616145
## [5,] -0.08640991 -0.7370654  0.3154692  0.1501343080 -0.0010828159
## [6,]  2.94184393  1.2551825  0.2925855 -0.0100606398  0.0004223128

Resultados a partir da matriz de correlação R

Dispersão gráfica